

Trade Credit Optimization[†]

Kimmo Soramäki

7 December 2023

Payment System optimization has resulted in Billions of liquidity savings

Key Features of the Trade Credit FMI

Objectives

- Save 25%+ of liquidity/operating capital for firms
- Reduce substantially payment delays
- Improve economic efficiency and resiliency
- Significant downstream effects for the economy

Design questions

- Data access
- Liquidity Saving Mechanism
- Credit Provision & Pricing
- Settlement Mechanisms (smart contracts, de/centralised, synchronization, frequency of Settlement)
- Payment Failure Recovery
- Incentives to join the FMI (banks & firms)
- Regulatory & supervisory handling

-> Phased approach with early wins and full vision achieved in stages

Trade Credit / Receivables are (payment) networks that can be optimized

Using network science / graph theory we can model and optimize these networks

Example:

Trade credit data from Huangdao Zone, Shandon Province, China, sourced from Cui (2021)

8,704 obligations between firms

Diagram 1. Reciprocal payment flows.

Diagram 4. Integrated payment flows. Source: Fleischman, et al. (2020)

Diagram 3. Cyclical payment flows.

Diagram 5: Generalized bow-tie network

Basic idea of resequencing and positive impact on liquidity

Example: We have two obligations: A to C of value 10 and C to B of value 10. And two orders to settle these.

Until now impossible to solve for large systems

Using brute force to find the sequence of payments which minimises liquidity is impossible

A sequence of 2 payments results in 2! = 2 possible sequences

A sequence of 20 payments results in $20! = 2.4 * 10^{18}$ possible sequences

= Three quintillion four hundred quadrillion

A sequence of 200 payments results in more sequences than there are atoms in the universe

Quantum computing can solve up 120 payments (McMahon et al. 2022)

FNA Re-sequence algorithm based on Graph Optimization works in a real-time environments with up to 25 million payments in 10 minutes,

Large potential liquidity savings

Huangdao Zone Credit network

BaselineCNY 1.61 BillionOptimal sequence with FNA:CNY 1.09 Billion

This is a **32%** liquidity saving, significant in relative terms—and potentially significant in absolute terms if extrapolated across a region or an economy.

CHIPS interbank payment system (US)

Baseline	USD 195 Billion
CHIPS algorithms	USD 68 Billion
Optimal sequence with FNA	USD 53 Billion

This is a **22%** saving to CHIPS algorithm and **73%** saving to Baseline

